Stability analysis of discrete-time Lur'e systems

نویسندگان

  • Carlos A. Cavichioli Gonzaga
  • Marc Jungers
  • Jamal Daafouz
چکیده

A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition, the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with respect to the quadratic function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model

This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...

متن کامل

Input-to-State Stability of Discrete-Time Lur'e Systems

An input-to-state stability theory, which subsumes results of circle criterion type, is developed in the context of discrete-time Lur’e systems. The approach developed is inspired by the complexified Aizerman conjecture.

متن کامل

Delay-dependent robust absolute stability criteria for uncertain multiple time-delayed Lur'e systems

In this paper, the problem of delay-dependent robust absolute stability of uncertain multiple time-delayed Lur'e systems with sector-bounded nonlinearity is investigated. The nonlinearity is assumed to be both time-invariant and time-varying. Based on the Lyapunov-Krasovskii stability theory and matrix decomposition method, some delay-dependent sufficient conditions for the robust absolute stab...

متن کامل

A Novel Approach to Designing of Chattering-Free Sliding-Mode Control in Second-Order Discrete-Time Systems

In this paper, a chattering-free sliding-mode control is mainly proposed in a second-order discrete-time system. For achieving this purpose, firstly, a suitable control law would be derived by using the discrete-time Lyapunov stability theory and the sliding-mode concept. Then the input constraint is taken into account as a saturation function in the proposed control law. In order to guarantee ...

متن کامل

New Robust Stability Criteria for Uncertain Neutral Time-Delay Systems With Discrete and Distributed Delays

In this study, delay-dependent robust stability problem is investigated for uncertain neutral systems with discrete and distributed delays. By constructing an augmented Lyapunov-Krasovskii functional involving triple integral terms and taking into account the relationships between the different delays, new less conservative stability and robust stability criteria are established first using the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Automatica

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2012